

Rotary Measuring Technology

Absolute Singleturn Encoders

Sendix absolut

M3658 / M3678 (Shaft / Hollow shaft)

SAE J1939

The absolute Sendix encoders M3658 and M3678 with SAE J1939 interface support all common requirements of the special protocol for utility vehicles and make a considerable contribution to the comprehensive system diagnostics or to fast fault localisation.

The encoders offer fast, error-free start-up with no need to set switches; the encoder address is assigned automatically via Address Claiming (ACL).

High IP value

High shaft load Shock / vibration

Safe Technology

- · Increased resistance against vibration and installation errors
- Sturdy bearing construction in Safety Lock™ Design
- · Fewer components and connection points increase the operational reliability
- OptoASIC technology with highest integration density (Chip-on-Board)
- Resistant die cast housing and protection up to IP 69K

Versatile Applications

- Up-to-the-minute Fieldbus performance in the application: SAE J1939 with CAN-Highspeed to ISO 11898
- Suitable connection variant for every specific case
- · Bus cover with M12 connector or cable connection
- · Fast determination oft he operating status via two-colour LED
- · Fast, error-free start up with no need to set switches; with automatic Address Claiming (ACL).

Safety-LockplusTM

IP69k protection on the flange side, robust bearing assemblies with interlocking bearings, mechanically protected shaft seal

Sensor-ProtectTM

Fully encapsulated electronics, separate mechanical bearing assembly

Order code Shaft version

Flange

2 = Synchro flange 2 Shaft (ø x L)

 $3 = \emptyset 6 \times 12,5 \text{ mm}$ $5 = \emptyset 6,35 (1/4") \times 12,5 mm$ $6 = 0.8 \times 12.5 \text{ mm}$

8.M3658 . XXXX .

Output circuit / Power supply

C = CAN Highspeed 8 ... 30 V DC

Type of connection

2 = cable radial (1 m PUR)

4 = M12 connector radial

32 X X

6 Fieldbus profile **32** = J1939

Option 2 1 = Standard

Option 1 1 = 1P672 - IP69k

Preferred types are underlined

Corresponding mating connector: 05.B-8151-0/9

Seawater resistant version on request

Order code **Hollow shaft**

Flange

2 = with long torque stop **5** = with stator coupling

4 Hollow shaft

 $2 = \emptyset 6 \text{ mm}$ 3 = Ø 6,35 (1/4") 4 = Ø8 mm $6 = \emptyset 10 \text{ mm}$

 $\begin{array}{c} 8.M3678 \\ \text{Type} \end{array} \begin{array}{c} . \hspace{.1cm} X \hspace{$

 Output circuit / Power supply C = CAN Highspeed 8 ... 30 V DC

Type of connection

= cable radial (1 m PUR) 4 = M12 connector radial

Fieldbus profile **32** = J1939

6 Option 2 1 = Standard Option 1 1 = 1P672 = IP69k

Preferred types are underlined

Corresponding mating connector: 05.B-8151-0/9

Seawater resistant version on request

- Cables and connectors, also pre-assembled, can be found in the chapter Connection Technology
- Mounting attachments and couplings can be found in the chapter Accessories

36 04/2009 www.kuebler.com

Rotary Measuring Technology

Absolute Singleturn Encoders

Sendix absolut

M3658 / M3678 (Shaft / Hollow shaft) SAE J1939

Mechanical characteristics				
Max. speed		6000 min ⁻¹		
Starting torque		< 0,06 Nm		
Shaft load capacity	radial	40 N		
	axial	20 N		
Weight		ca. 0,2 kg		
Protection to EN 60 529/DIN 40050-9		IP 67/IP 69k		
EX approval for hazardous areas		optional Zone 2 und 22		
Working temperature range		-40 °C +85 °C		
Materials	Materials Shaft / Hollow shaft			
	Flange	Aluminium		
	Housing	Zinc die-cast		
	Cable	PUR		
Shock resistance acc. to DIN-IEC 68-2-27		5000 m/s ² , 6 ms		
Vibration resistance acc. to DIN-IEC 68-2-6		300 m/s², 10 2000 Hz		
Permanent shock resistance acc. to DIN-IEC 68-2-29		1000 m/s ² , 2 ms		

Diagnostic	LED (two-col	our, red/green)
------------	--------------	-----------------

LED ON or blinking	red	Error display
	areen.	Status displa

General electrical characteristics	
Supply voltage	8 30 V DC
Current consumption, 24 V DC, (no load)	< 25 mA
Reverse connection of the supply voltage (Ub)	yes
Measurement range	360°
Linearity	< 1°
Repeat accuracy	< 0,1°
Data refresh	400 μs
RoHS compliant acc. to	EG-guideline 2002/95/EG
CE compliant acc. to	EN 61000-6-2, EN 61000-6-4 and EN 61000-6-3

Interface characteristics CANopen		
Resolution	1 16384 (14 bit), scaleable: 1 16384	
Default value	16384 (14 bit)	
Code	Binary	
Interface	CAN High-Speed according to ISO 11898, Basic- and Full-CAN, CAN Specification 2.0 B	
Protocol	SAE J1939	
Baud rate	250 kbit/s	
Node address	1 255 (via address claiming)	
Termination	Software configurable	

General Information concerning SAE J1939

The protocol J1939 originates from the international Society of Automotive Engineers (SAE) and operates on the physical layer with high speed CAN as per ISO11898. The application emphasis lies in the area of the power train and chassis of commercial vehicles.

It serves to transfer diagnostic data (for example, motor speed, position, temperature) and control information. Type series M3658 and M3678 encoders support the total functionality of J1939. This protocol is a multimaster system with decentralised network management that does not involve channel-based communication.

It supports up to 254 logic nodes and 30 physical control devices per segment. The information is described as Parameters (signals) and combined on 4 memory pages (Data Pages) into Parameter Groups (PGs). Each parameter group can be identified via a unique number, the Parameter Group Number (PGN). Independently of this, each signal is assigned a unique SPN (Suspect Parameter Number).

The major part of the communication occurs cyclically and can be received by all control devices without the explicit request for data (Broadcast). Furthermore the parameter groups are optimised to a length of 8 data bytes. This enables very efficient utilization of the CAN protocol.

If greater amounts of data need to be transferred, then transport protocols (TP) can be used: BAM (Broadcast Announce Message) and CMDT (Connection Mode Data Transfer). With BAM TP the transfer of data occurs as a broadcast.

Encoder Implementation SAE J1939

- PGNs that are adaptable to the customer's application
- Resolution of address conflicts -> Address Claiming (ACL)
- Continuous checking whether control addresses have been assigned twice within a network
- · Change of control device addresses during run-time
- Unique identification of a control device with the help of a name that is unique worldwide
- This name serves to identify the functionality of a control device in the network
- Predefined PGs for Position, Speed and Alarm
- 250 kBit/s, 29-Bit Identifier
- Watchdog controlled device

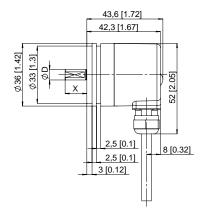
A two-colour LED, located on the rear of the encoder, signals the operating and fault status of the J1939 protocol, as well as the status of the internal sensor diagnostics.

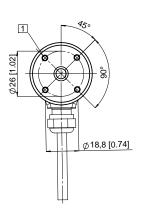
37

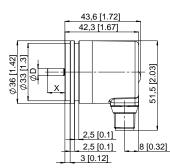
Terminal assignment

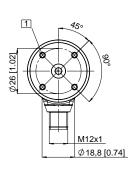
Signal:	+Ub	0 V	CAN GND	CAN High	CAN Low
M12/Pin:	2	3	1	4	5
cable colour:	BN	WH	GY	GN	YE

Rotary Measuring Technology

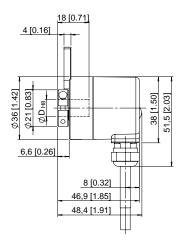

Absolute Singleturn Encoders

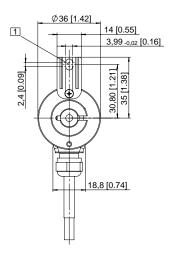

Sendix absolut

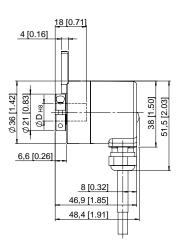

M3658 / M3678 (Shaft / Hollow shaft) SAE J1939

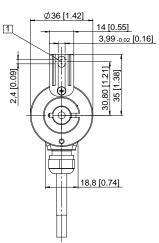

Dimensions shaft version:

ø 36 mm, Synchro flange


1 M3, 6 [0.24] deep


Dimensions hollow shaft version:


ø 36 mm, Flange with long torque stop


1 Torque stop slot, Recommendation: cyl. pin. acc. DIN 7 ø4

ø 36 mm, Stator coupling

